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Theoretical predictions of the mixing properties of solid solu-
tions can be made, in principle, via three di4erent approaches:
through the use of phenomenological, semi-classical atomistic,
and ab initio techniques. Comparison of the results, obtained by
application of all of the above-mentioned ways, is carried out for
an example of the oxide solid solutions with the NaCl-type
structure: CaO+MgO, CaO+MnO, MnO+NiO, and MgO+
MnO. From this it is inferred that the predicted mixing energies
for the whole range of compositions are generally in reasonable
agreement with each other and with available experimental
measurements for the systems under consideration. However,
closer inspection shows marked systematic di4erences between
the values of mixing energy and the structure relaxation para-
meters predicted with the use of di4erent methods. In particular,
this is due to the use of rather small and ordered unit cells for the
atomistic and ab initio calculations. This allows one to make
approximate estimates of disordering energies and propose some
ways to improve the theoretical simulation of the solid solutions:
mixing properties. ( 2000 Academic Press

Key Words: oxide solid solutions; prediction of mixing prop-
erties.

INTRODUCTION

Today there are a number of theoretical models for de-
scribing and predicting the main mixing properties of oxide
solid solutions: mixing energy, mixing volume, vibrational
entropy, excess free energy, etc. This allows one to predict in
some cases the solid state phase diagram and solubility
limits at temperatures below the critical decomposition tem-
perature.

The currently available models can be classi"ed into three
main types:

(1) semi-empirical phenomenological models;
(2) semi-classical atomistic approaches; and
(3) "rst-principles or ab initio calculations.
o whom correspondence should be addressed. Fax: 007-095-9395575.
ail: urusov@geol.msu.ru.
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The aim of this paper is to describe in brief and compare
these models using the simple oxide solid solutions with
NaCl-type structure as an example. This choice is justi"ed
by the facts that these isovalent solid solutions have been
subjected to a most extensive theoretical investigation, using
all three types of approaches mentioned above, and they are
well studied experimentally.

SEMI-EMPIRICAL PHENOMENOLOGICAL MODELS

The "rst successful attempt to solve the problem of es-
timation of structure relaxation and mixing energy of ionic
solid solutions was reported by Wasastjerna and his
colleagues (1,2). The model created by these authors allows
for the relaxation of one common ion, i.e., the C ion between
two next-nearest neighbors A and B in a solid solution
(A

x
B
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)C. The main proposition about the NaCl-type
structure solid solutions is that A and B ions form a regular
close packing so that the distance between A and B is equal
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This assumption was based on the early X-ray di!raction
studies of solid solution structures (3) which detected a de-
crease in re#ection intensities as compared to the case of
pure end-member crystals. This observation cannot be ex-
plained only by thermal vibrations and implies noticeable
static displacements of ions in a nonmixed sublattice around
their regular positions. An analysis of such e!ects showed
0022-4596/00 $35.00
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that the local displacements are of the order of the di!erence
in interatomic distances of end-members and moreover
could be close to half of that value.

For the "rst-order terms, Eqs. [1] can be rewritten ap-
proximately as follows:

R
1
(x)+R!(1/2)*R,

R
2
(x)+R#(1/2)*R. [2]

From Eq. [2] it is evident that the decrease of R
1
(x)

amounts to nearly !*R/2 and the increase of R
2
(x)

amounts to nearly *R/2. This means that such a model
accounts for a structure relaxation and the so-called site
compliance parameter c

4
equals approximately 0.5, in good

agreement with the subsequent determinations of c
4
by the

use of DLS simulation (4) and EXAFS measurements for the
solid solutions with the NaCl-type structure (5).

The energy of a solid solution with relaxed interatomic
distances is expanded into a power series up to the second-
order terms with respect to small size parameter d"*R/R.
The pair interaction potentials used are assumed to be
of the simple central-force type and not speci"ed because
only their second derivatives are retained and then deter-
mined from the experimental data on isothermal compress-
ibility and molar volume of end-members. The mixing
energy in the Wasastjerna}Hovi model takes the following
form,

*;
.*9

"x
1
x
2
(h/4#1/2)(A/R)d2, [3]

where A is the Madelung constant, and h is the empirical
parameter related to the coe$cients of compressibility and
thermal expansion. At 0 K the value of h is

h"18R4/Ab"(9</b)(R/A), [4]

b being the coe$cient of isothermal compressibility. Al-
though this theory takes into account both the local dis-
placement of the common ion and, late in the analysis, even
the e!ect of partial local order, it is not able to describe
adequately the available experimental data over the entire
composition range.

Hietala's model (6) was based on similar assumptions
regarding the structure relaxation of an NaCl-type solid
solution. The interatomic distances in the linear chain
SA}C}BT"2R was represented as a sum of SA}CT"
(R#u) and SC}BT"(R!u), R being the average in-
teratomic distance (R"x

1
R

1
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2
) and u the displace-

ment of the C ion from its regular position.
Interatomic potentials were again not speci"ed because

the energy expansion into Taylor's series was restricted to
the second-order terms and the values of second derivatives
were estimated by the use of experimental data on the bulk
modulus K of end-members. The minimization of the mix-
ing energy *;

.*9
with respect to R and u yields

u+*R/2, [5]

*;
.*9

"(9/4)x
1
x
2
<
1
K

1
d2
1
, [6]

where <
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are the molar volume and bulk modulus,
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1
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1
being the interatomic distance in the end-

member 1. If one inserts the third-order terms into the
Taylor's series, the e!ect of asymmetry of *;

.*9
as a func-

tion of composition can be expressed in the following form,
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where B"0.6 (A_ ~1)*R.
As the product<K for all alkali halide crystals is equal to

630 kJ/mol with an accuracy of a few percent, Eq. [6] can be
rewritten in the simple form:
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1
x
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1
. [8]

Detailed calculations making use of these expressions
lead to a very good agreement with all available experi-
mental measurements of the mixing enthalpy for some alkali
halide solid solutions. It may be interesting to note that, by
substituting [4] into [3], one can easily see a close resem-
blance between the main expressions of the Wasas-
tjerna}Hovi and Hietala theories, Eqs. [3] and [6], the
former being somewhat more complicated and less accurate.

Let us now derive the expression for *;
.*9

in a shorter
and more generalized way than that used originally by
Hietala in order to expand its application to other groups of
solid solutions with the NaCl-type crystal structure.

We denote the e!ective bond potential function by e (R). It
is implicitly assumed that such a potential includes both
long-range and short-range interactions per an ionic pair
which are still not speci"ed in detail. The number of bonds
A}C in linear chains A}C}A will be proportional to x2

1
and

in chains A}C}B to x
1
x
2
. In a similar way the number of

bonds B}C in chains B}C}B will be proportional to x2
2
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in chains B}C}A to x

2
x
1
. Then the energy change at forma-

tion of a solid solution (A
x1

B
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)C can be represented as
follows:
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Here N is Avogadro's number, l is the coordination
number, e

1
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) are the energies of A}C and B}C

bonds in the end-members 1 and 2, e
1
(R) and e

2
(R ) are the

energies of these bonds with the average bond distance R in
chains A}C}A and B}C}B, correspondingly, and e
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) and
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) are those in chains A}C}B.



TABLE 1
Structural and Elastic Properies of Pure Oxides

Oxide R, A_ <, cm3/mol K, GPa <K, kJ/mol

MgO 2.102 11.25 165 1856
CaO 2.405 16.76 116 1944
SrO 2.570 20.45 98 2003
BaO 2.761 25.35 82 2079
MnO 2.223 13.22 154 2036
NiO 2.088 10.97 190 2084

TABLE 2
Energies of Mixing (kJ/mol) of the CaO+MnO Solid Solutions

x(CaO) Eq. [13] CRYSTAL GULP Exp. (23) Exp. (24)

0.125 3.2 3.8 (3.6) 5.1 (1.7) 6.2
0.25 5.4 8.5 2.9 9.2
0.5 7.0 5.9 (6.7) 9.2 4.0 10.4
0.75 5.0 9.1 3.2 8.0
0.875 2.9 3.2 (3.2) 5.8 (1.7)
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The bond lenghts R1
1

and R1
2

depend on the displacement
u of C ions from the centre of the bond chain:

RM
1
"R!u

RM
2
"R#u.

Now we expand the energy into Taylor's series to the
second-order terms, keeping in mind that, due to the lattice
equilibrium condition, the "rst derivative is equal to zero at
¹"0 K,
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where k"eA(R
i
) is the e!ective force constant of the corre-

sponding bond (i"1, 2).
If one assumes that the bondings in both end-members

are closely related to each other, i.e., k
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Using the following forms of Vegard's rule,
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and denoting Nlk(R) by EA(R), the rewrite Eq. [10] as
follows:
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This means that the displacement of C ions amounts to
half of the di!erence in end-member distances in accord
with our expectation from the above consideration. Substi-
tuting [11] into [10], one has
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Using the well-known thermodynamic relation, valid at
¹"0 K for the NaCl structure type, EA(R)"9<K/R2, one
has
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This expression is very similar to Eq. [6], except that all
parameters <, K, and d are related not to the "rst end-
member but rather to the whole range of compositions of
a solid solution and, in principle, are dependent on com-
position. In addition, it was noted (7, 8) that Eq. [13] has to
be valid not only for alkali halide solid solutions but also for
all solid solutions with NaCl-type structure: oxides, chal-
cogenides, nitrides, carbides, and so on. Indeed, the product
<K is nearly constant for each group of these substances:
2000 kJ/mol for oxides MO, 1210 for chalcogenides, and
2930 for carbides MX. The experimental data on some
structural and physical properies of oxides MO with the
NaCl-type structure are given in Table 1. One can see that
the product<K is actually nearly constant with an accuracy
of a few percent. This means that the composition
dependence of *;

.*9
is still retained through the slight

composition dependence of the size parameter d"
*R/(x

1
R

1
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2
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2
).

Therefore, with the average value of <K"2000(70) kJ,
Eq. [13] can be used for calculation of the mixing energies
*;

.*9
for some oxide solid solutions. The results of such

calculations are given in Tables 2}5. It can be seen that these
are in very satisfactory agreement with available experi-
mental data.

SEMI-CLASSICAL ATOMISTIC APPROACH

Lattice (atomistic) semi-classical calculations of such de-
fects in ionic crystals as vacancies, interstitials, and foreign
(substitutional) ions began with the classical work by Mott
and Littleton (9). They established the fundamentals of this



TABLE 3
Energies of Mixing (kJ/mol) of the MnO+NiO Solid Solutions

x(NiO) Eq. [13] CRYSTAL GULP Exp. (25) Exp. (26)

0.125 1.8 2.5 3.4 1.3 1.5
0.25 3.2 5.6 2.2 2.5
0.5 4.4 4.1 6.0 2.6 3.5
0.75 3.4 5.8 1.6 2.5
0.875 2.0 2.4 3.6 0.9 1.5

TABLE 5
Energies of Mixing (kJ/mol) of the CaO+MgO Solid Solutions

x(CaO) Eq. [13] SCPIB (18) GULP (18)

0.125 9.8 8.0 14.5
0.25 16.4 14.5 26.0
0.50 20.3 15.0 29.0
0.75 14.2 13.9 22.5
0.875 8.1 6.5 13.9
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type of calculations, assuming an explicit atomistic model
for the crystal in the immediate vicinity of the defect and
describing the relaxation of the lattice far from the defect
using some continuum approximation. In other words, this
model treats an isolated defect as surrounded by an inner
region I, which is explicitly relaxed, and an outer region II,
where the lattice relaxation is approximated in some con-
tinuum fashion. The ionic displacements and dipoles in
region II are calculated using simple formulas employing
the macroscopic dielectric constants.

According to this methodology (10, 11), the total energy
of the system can be found by direct minimization with
respect to independent atomic coordinates describing the
con"guration of region I. Indeed, the defect energy ap-
proaches the best estimate as the size of region I is increased
and, therefore, the number of variables to be optimized and
the computational time are increased, too. It is common
that for convergence the number of ions needed in region I is
of the order of 102 and the total number of variables can be
a few times more.

However, direct application of the Mott}Littleton theory
allows one to calculate the energy of solution of an isolated
defect in the host crystal, so that such a case relates to
in"nite dilution of a solid solution. In order to perform
calculations for concentrated solid solutions the model has
to be adopted to represent the bulk materials using periodic
boundary conditions.

Such an attempt was recently undertaken (12) for
MnO}NiO, MgO}MnO, and CaO}MnO systems. Solid
solutions of di!erent compositions were modeled by cre-
ating a supercell or a subcell of the host oxide MO and
TABLE 4
Energies of Mixing (kJ/mol) of the MgO+MnO Solid Solutions

x(MnO) Eq. [13] CRYSTAL GULP Exp. (27) Exp. (28)

0.125 1.6 3.9 (4.4) 2.8 2.2 1.8
0.25 2.7 4.6 3.9 3.0
0.5 3.5 5.2 (6.7) 4.8 5.3 4.0
0.75 2.6 4.4 3.0 3.6
0.875 1.5 3.2 (3.7) 2.7 1.6 2.1
successively replacing the host cation M by another cation
M@ to give the desired stoichiometry. Thus, 16-ion supercells
of the type MM@

7
O

8
and M

7
M@O

8
were used for the 12.5

and 87.5% solid solutions, while for the 50% solid solutions
the 4-ion rhombohedral double subcell MM@O

2
was used.

The 25 and 75% solid solutions were represented through
the 16-ion supercells of the type M

2
M@

6
O

8
, in which the two

metal ions M are placed along the [110] direction. It is
necessary to stress that all chosen unit cells allow the relax-
ation of the oxygen atoms to be taken into account.

The atomistic calculations were performed (12) with the
computer code GULP (13), using interatomic short-range
Buckingham potentials to represent both the M}O and
O}O interactions,
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, [14]

where R
ij

is the distance between ions i and j, and A
ij

, o
ij
,

and C
ij

are parameters that depend on the identity of ions
i and j. The shell model was used to represent the anionic
polarizability in the conventional form k

#4
(*r

#4
)2, where *r

#4
is the distance between the inner core of an oxygen atom
with charge q

#
and a massless shell with charge q

4
, connected

by an isotropic, harmonic spring with spring constant k
#4
.

O}O interaction parameters were taken from (14) (employ-
ing a core-shell spring constant of 53.9 eV/A_ 2 ) and the
M}O parameters from (15). All the calculations based on
interatomic potentials allowed the simultaneous relaxation
of the cell parameters and of all the internal coordinates.
The results of these calculations are listed in Tables 2}4.

Somewhat earlier, analogous theoretical investigations of
the CaO}MgO solid solutions were performed with the
GULP code in (18). The potential set involved the
shell}core interactions for oxygen and both cations. For
comparison purposes the calculations were made with dif-
ferent potential parameters. Those authors used 21 super-
cells with di!erent cation arrangements, representing
di!erent compositions. The largest supercell for a &&single
cation'' defect in a nearly pure host crystal contained 216
ions (3]3]3 supercell of the conventional FCC unit cell).
The largest structure for modeling more concentrated solid
solutions contained 64 ions in the unit cell, while most of the
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mixed atomic con"gurations were represented by smaller
unit cells. The energies of all structures were minimized with
respect to cell parameters and ionic positions. Part of the
results of these calculations is given in Table 5 for compari-
son with the results of other approaches.

AB INITIO CALCULATIONS

The above-cited work (12) also used the computational
model at the ab initio Hartree}Fock (HF) level of approxi-
mation, based on periodic boundary conditions as imple-
mented in the CRYSTAL code (16). The open-shell solution
of the magnetic oxides MnO and NiO has been represented
via an unrestricted Hartree}Fock (UHF) treatment of the
spin-independent part of the wave functions.

As is known, the wave function of the solid is described by
CRYSTAL in terms of crystalline orbitals, obtained as lin-
ear combinations of atomic orbitals (LCAO method), local-
ized on atomic positions. The basis sets have been derived
from previous studies on the pure oxides MgO, CaO, MnO,
and NiO (the oxygen basis set uses the exponents of 0.500
and 0.191 bohr~2 for the 3sp and 4sp electron shells) and
correspond to a split-valence, triple-f-quality basis set for
the sp atomic orbitals, while the d atomic orbitals of Mn and
Ni are described with a double-f basis set; a set of single-f
polarization functions was also included for Ca. The proper-
ties (lattice constants and bulk moduli) of pure oxides were
correctly reproduced with the above Hamiltonian and basis
functions.

Finally, HF results have been corrected to estimate the
e!ect of electron correlation. Once the HF energy and wave
function have been calculated, the correlation correction to
the energy is evaluated a posteriori with a density functional
of the Hartree}Fock equilibrium density, according to the
generalized gradient approximation (GGA) scheme pro-
posed by Perdew (17). However, no correction has been
made for the HF wave function.

An alternative ab initio approach, the so-called self-con-
sistent potential-induced breathing (SCPIB) model, was
used to compute the formation and free mixing energies for
the system MgO}CaO in (18). The SCPIB model (19) is
a "rst-principles energy calculation in which the charge
density is localized at each ion. The total energy of the
crystal is the sum of the self-energy of each ion and the
interatomic interaction energy. The energy is determined
using the local density approximation following the ap-
proach of Gordon and Kim (20). One-particle wavefunc-
tions are obtained from a SchroK dinger equation in which the
potential energy term is averaged spherically. The total
energy of the crystal is then calculated from the self-consis-
tent charge density. This approach extends that of Gordon
and Kim by allowing the interatomic interactions to deform
the charge density at each ion. This method has been called
the spherical self-consistent deformation (SSCAD) model.
In its present form, its use is restricted to highly ionic
crystals, where the nonspherical components of the charge
density about each ion are unimportant. The authors of (18)
proposed that these conditions have to be satis"ed fairly
well in the MgO}CaO system. For comparison, some
benchmarking calculations were performed with the
pseudopotential technique (21) and the linearized aug-
mented plane wave method (LAPW) (22).

It is signi"cant that this investigation applied a cluster
expansion of the con"gurational free energy "tted to the
results of quantum mechanical methods. It enables one to
consider only a limited number of pair interactions, for
instance, sixth nearest cation}cation neighbors, three three-
body and two four-body terms. E!ective cluster interactions
in the cluster expansion can be determined by "tting to the
semi-empirical or "rst-principles energy computations.
Only a limited number of terms can be retained in the
cluster expansion in order to provide a very good conver-
gence and compute the energy of many other structures that
were not included in the "t. As a result, only structures with
small unit cells are required to obtain accurate value of
energy: none of the structures in the limited "t contained
more than 20 ions in the unit cell.

COMPARISON OF THE RESULTING MIXING ENERGIES

Tables 2}5 contain the results of the mixing energy calcu-
lations using the above-described di!erent semi-empirical,
atomistic, and "rst-principles techniques in comparison
with available experimental data. Not all theoretical data
obtained are listed in these tables. For instance, there are no
results of calculations with the use of CRYSTAL code (12)
for the "xed oxygen coordinates (the so-called virtual crystal
approximation), because relaxation of the internal coordi-
nates is absolutely necessary for the correct reproduction of
the mixing energy. As is well known, the virtual crystal
approximation yields *;

.*9
values which are nearly 2 times

larger, due to relaxation elimination. The values obtained
with CRYSTAL code (12) without regard for electron cor-
relation are given in parentheses in Tables 2 and 4. As is
seen, the inclusion of electron correlation usually reduces
the calculated values of the mixing energy with respect to
the pure HF values. For the MnO}NiO system only the
results of CRYSTAL calculations for antiferromagnetic spin
state are given in Table 3, because the antiferromagnetic
ordering of spins is more stable for both end-member ox-
ides. With regard to the CaO}MgO system, only the lowest
values of *;

.*9
, obtained both with the classical computa-

tions and with the "rst-principles procedure, are listed in
Table 5.

As is seen from Tables 2}5, there is a general satisfactory
agreement between the calculated and experimental data,
especially if one keeps in mind the large uncertainty of
the latter data. For instance, di!erent experimental
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measurements of *;
.*9

for the CaO}MnO system di!er by
more than a factor of 2 (Table 2) and in this case all
theoretical results fall between the lower and upper experi-
mental limits.

However, closer inspection of all the data in Tables 2}5
shows that there is clear evidence of some systematic dis-
crepancy between the results of di!erent methods. First, one
can indicate a good agreement between the semi-empirical
and ab initio approaches, while the calculations with the
semi-classical method give too large values of *;

.*9
for all

systems under consideration. Second, in the case of the
CaO}MgO system the semi-empirical method apparently
yields nearly 30% as high values as the SCPIB, especially in
the region of middle compositions. The application of the
SCPIB lends credence to *;

.*9
values, obtained by this

method, because, together with the simulation of vibrational
free energy, they lead to computation of the CaO}MgO
solid state phase diagram in excellent agreement with ex-
perimental data. This suggests that the semi-empirical ap-
proach su!ers from some oversimpli"cation. In particular,
as is seen from Table 1, the <K values for these two oxides
are the least and, therefore, using the average value of this
quantity leads to overestimation of the calculated *;

.*9
by

about 5%. Besides, it has long been known (29) that the
composition dependence of the bulk modulus K(x) of
a solid solution undergoes substantial negative deviation
from linearity. Therefore, it is likely that Eq. [13] suggests
too strong a dependence of *;

.*9
on composition than

appears to be the case. The same conclusion can be drawn
from a close examination of Tables 2, 3, and 4: all calcu-
lations with CRYSTAL and GULP codes provide reason to
speculate that the composition dependence of *;

.*9
is

somewhat lower than that presumed by using the phenomeno-
logical model. A proper correction of this model is very
likely to give *;

.*9
values in accordance with more sophis-

ticated calculations and experimental data.
As mentioned above, the semi-classical calculations yield

essentially larger values of the mixing energy than the
ab initio and semi-empirical estimates. Such a di!erence is
quite pronounced for the CaO}MgO system (Table 5) and
that is why special attention was drawn to this fact in (18).
The authors undertook extensive calculations using the pair
potentials [14] with four di!erent parameter sets. Neverthe-
less, in all cases the calculated values of *;

.*9
were nearly

2 times larger than those predicted by the SCPIB method.
For instance, for the middle composition (molar fractions of
both components are equal to 0.5) the SCPIB results were
within the interval &14.5}&24.0 kJ/mol, while the results
of atomistic calculations fall in the range from &29.0 to
&53.0 kJ/mol. The best results were obtained only after
"tting the pair potential parameters to SCPIB results over
a wide range of lattice constants (3.3}5.0 A_ ).

In order to give a better insight into the nature of such
a divergence the authors (18) made some calculations of
formation energies of a few ordered structures: Ca
3
MgO

4
(L1

2
structure), CaMgO

2
(L1

0
structure), and CaMg

3
O

4
(L1

2
structure). They used the pair potential model with

di!erent parameters, pseudopotentials, LAPW, SCPIB, and
SCPIB with oxygen wavefunctions "xed at the self-consis-
tent values in pure CaO and pure MgO. The pseudopoten-
tial, LAPW, and SCPIB results were in close agreement to
each other: for instance, the formation energy of CaMgO

2
was varied through a range from 20.6 to 27.2 kJ/mol
(Ca

0.5
Mg

0.5
O). At the same time, the atomistic calculations

for the same structure gave the results within the interval
36.4}49.2 kJ/mol. The pair potentials with partial charges of
all ions (#1.7 on cations and !1.7 on oxygen atoms) gave
the lowest values of *;

.*9
: about 30% lower than the

formal-charge parameters, although still 30% higher than
the ab initio results.

Now consider these data with respect to possible explana-
tions of the above-mentioned disagreement. First, compari-
son of the results obtained by the ab initio methods for
disorded and ordered structures of the same composition
can give some useful estimates of the disordering energy.
Indeed, the di!erence between *;

.*9
values for

(Ca
0.5

Mg
0.5

)O solid solution and the formation energy of
the hypothetical compound (CaMgO

2
)
1@2

is not less than
!4.8}5.8 kJ/mol. Therefore, the solid solution is more
stable than the ordered structure because of this consider-
able energy gain, consistent with the well-established tend-
ency of this system to decompose at very high temperatures
(above 2500 K) and not to form any ordered compounds.

For other systems under question both GULP and
CRYSTAL calculations were performed for strictly ordered
structures of di!erent compositions (Tables 2}4). Hence, this
makes it possible to estimate roughly the disordering energy
for these systems by substraction of the mixing energies
obtained with the GULP and CRYSTAL techniques from
those obtained with the use of the phenomenological ap-
proach. It is easy to see that this energy for middle composi-
tions is of the order of !1 to !2 kJ/mol, consistent with
the much weaker tendency of these solid solutions to de-
compose than in the previous case.

It is also possible, in principle, to convert approximately
the values of formation energies, calculated for the ordered
structures, to *;

.*9
values for random solid solutions. For

instance, it is obvious that a probability of formation of the
local order, corresponding to the structure of CaMgO

2
(L1

0
), is extremely low for the random solution. At the same

time, probabilities of formation of the local structures, de-
scribed by the L1

2
-type compounds (Ca

3
MgO

4
and

CaMg
3
O

4
), appear to be much larger. From this it is

inferred that the mean value of the formation energies of the
L1

2
-type compounds would be closer to the mixing energy

of the random solid solution. Indeed, this mean value com-
prises 15.6}18.3 kJ/mol (Ca

0.5
Mg

0.5
)O for di!erent SCPIB

approximations, slightly larger than the result of SCPIB
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calculations for the mixing energy of the solid solution of the
middle composition (Table 5). It is very likely that a better
understanding can be gained of such a &&randomization''
procedure.

However, similar averaging of the results of atomistic
calculations (Table 5) for x (CaO)"0.25 and 0.75 provides
a markedly larger value of 24.3 kJ/mol (Ca

0.5
Mg

0.5
)O. This

means, as was already emphasized by the authors (18), that
the atomistic calculations strongly overestimate the mixing
energy. They explained this fact by the oxygen &&breathing''
e!ect, that is by variations of the size of of the oxygen ion,
depending on the composition of solid solution. The im-
portance of this e!ect appears in two ways: "rst, errors as
large as 15% were found, when the energy was computed
with oxygen wavefunctions that were not allowed to
breathe; second, the small di!erence between the exact
SCPIB energies and those computed with the potential
parameters "t to the SCPIB results suggested that the oxy-
gen &&breathing'' cannot be exactly reproduced by the
metal}oxygen pair potential because of the multibody na-
ture of this e!ect.

Nevertheless, in the present author's opinion, as to the
atomistic calculations, the use of di!erent shell-model para-
meters for both end-members with allowance made for their
dependence on composition of a solid solution would bring
theory and experiment into better agreement. A check of
this assumption is now in the development stage.

Another way to improve the results of theoretical predic-
tions is to calculate structural and energetic properties for
a solid solution with a given composition represented by
a series of supercells with di!erent degrees of short-range
order. This makes it possible to estimate those of a random
solid solution by extrapolation of the values of calculated
properties as a function of the ordering degree to zero value
of the ordering parameter. Such calculations for the systems
MgO}CaO, CaO}SrO, and SrO}BaO are now in progress,
too.

LOCAL ATOMIC DISPLACEMENTS AND DEVIATIONS
FROM VEGARD:S RULE

Both semi-empirical and ab initio calculations enable one
to determine the displacements of atoms in a common
sublattice, for the case studied, oxygen atoms, from their
regular positions. According to Eqs. [2] and [11] of the
semi-empirical phenomenological model, the displacement
u is equal to approximately $*R/2. Thus, for instance, the
oxygen atom displacements have to be 0.067, 0.060, and
0.091 A_ for the systems MnO}NiO, MgO}MnO, and
CaO}MnO, correspondingly.

Now it is possible to compare all three approaches for the
same three systems. The atomistic GULP calculations (12)
give the following values of the oxygen ion displacements:
$0.036(2), 0.032(1), and 0.049(1) A_ , correspondingly, while
the ab initio CRYSTAL (with the correction for
electron correlation) calculations yield $0.03, 0.04,
and 0.04 A_ , correspondingly. The comparison of these
results led to the following conclusions: "rst, the displace-
ments of the common sublatttice atoms are not dependent,
to a "rst approximation, on the composition; second, the
semi-empirical phenomenological approach predicts the
values of these displacements, which are by a factor of
2 larger than those predicted with GULP and CRYSTAL
codes.

In other words, these results suggest that the relaxation
parameter or the site compliance factor comprises for the
semi-empirical phenomenological model 50%, while for the
GULP and CRYSTAL calculations it amounts to about
70}75%. In this connection, it is worth noting that the
experimental EXAFS measurements for NaCl-type struc-
ture solid solutions yield values of this factor of about 60%
(5). It follows that the phenomenological model underesti-
mates the relaxation of solid solution structure, while the
GULP and CRYSTAL calculations overestimate it. The
former appears to be a consequence of neglect of some
second-order e!ects in interatomic interactions and the lat-
ter is likely to be a result of the use of small ordered
supercells to model the solid solution structure.

A geometric and statistical analysis of the secondary
atomic displacements (the displacements of the next
nearest neighbors), which has been performed previously
(30), provides a possibility of estimating deviations of
the interatomic distances and lattice parameters of solid
solutions from linearity, described by the well-known
Vegard's rule. For the NaCl-type crystal structure the devi-
ations dR(x) can be calculated by means of the simple
equation:

dR(x)"(3/2)x
1
x
2
(*R)2/R. [15]

This expression predicts small positive deviations from
Vegard's rule for all systems under investigation. For in-
stance, the calculated deviations do not exceed 0.005 A_ at
maximum for equimolar composition (x"0.5) of the
CaO}MnO system. For the two other systems (MgO}MnO
and MnO}NiO) the estimated deviations are approximately
2 times lower. This means that a high precision of measure-
ments is needed to determine such deviations experi-
mentally. Indeed, the repeated experimental evidence
suggests that the lattice constants of the MnO}NiO and
CaO}MnO systems obey Vegard's rule, whereas those of
the MgO}MnO system reveal small positive deviations
from Vegard's rule (27,31}33). The calculations with the
GULP and CRYSTAL codes for these systems (12) showed
that the equilibrium lattice parameters obey Vegard's law,
except for the MgO}MnO system, in which the HF tech-
nique found small positive deviations from linearity (max-
imum value at x"0.5 is of about 0.007 A_ ).
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The discussion herein gives promise that accurate theor-
etical prediction of solid solution mixing properties may be
attained, using various approximations, from very simple
semi-empirical models to the most sophisticated, although
much more time- and labor-consuming, ab initio calcu-
lations. The recent considerable and independent achieve-
ments of several groups of investigators are very
encouraging and pave the way for the near future re"nement
of our understanding of the problem under consideration. It
may be worth noting a very recent survey (34) of the devel-
opments to which the Mott}Littleton approach (9) has led.
Among other new ways to model structure and properties of
solid solutions, one can mention molecular dynamics simu-
lations (35). In recent years very fast progress has taken
place in quantum-mechanical studies of defective crystals.
In this "eld one should mention a series of works by Pisani
and co-workers (36}39), who have developed EMBED code
(36), utilizing the &&embedded cluster approximation'' for
Hartree}Fock treatment of isolated point defects. It is the
author's opinion that all these models are useful in order to
give a better insight into the nature of disorder of solid
solution structure and all of the relevant properties of these
materials.
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